WEBINAR

Advancing Stroke Care: Prevention, Treatment, and Rehabilitation

🛗 04.06.2025 🕔 10:00 am 🛛 Host: SYNYO GmbH

Guest project presentations: THCS, POC4TRIAGE, EQL Stroke, PEER-HOMEcare

This project is part of the European Partnership on Transforming Health and Care Systems (THCS), which has received funding from the European Union under the Horizon Europe Framework Programme - Grant Agreement No. 101095654 (FFG grant agreement No. 50773503).

Key information

Time	Торіс	Presenter		
10:00 - 10:05	Welcome and introduction to the webinar and its objectives	Alexander Nikolov SYNYO GmbH		
10:05 - 10:20	Overview of the THCS Partnership	Ewoud van der Wal THCS Program manager		
Stroke care, prevention and rehabilitation				
10:20 - 10:30	POC4TRIAGE Key highlights and contributions to stroke care and prevention	Hannes Perko Senior Research Engineer at Austrian Institute of Technology		
10:30 - 10:40	MDR in AIS Advancements in the treatment of ischemic stroke patients	Alexander Nikolov SYNYO GmbH		
10:40 - 10:50	EQL Stroke Rehabilitation innovations	Signe Tomsone Associate Professor, Department of Rehabilitation, Riga Stradiņš University		
10:50 - 11:00	PEER-HOMEcare Rehabilitation innovations	Guna Berzina Department of Rehabilitation, Riga Stradiņš University		
11:00 - 11:30	Q&A session and audience interaction	Alexander Nikolov SYNYO GmbH		
11:30	Closing remarks	Alexander Nikolov SYNYO GmbH		

HOUSEKEEPING RULES

The session will be entirely recorded and published on the MDR in AIS project website.

All participants except speakers and moderators will be **muted by default**.

Feel free to post your questionsions in the **chat**.

If you would like to speak, raise your hand and wait for the moderator to give you the floor.

Overview

EU Partnership Transforming Health and Care Systems (THCS)

Ewoud van der Wal - THCS Joint Call Secretariat

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement Nº: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Δ

Overview

Overview

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement No: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Overview

Pillars and Work Packages

Co-funded by the European Union

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement No: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Overview

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement No: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Overview

THCS Vision and Objectives

High-quality, fairly accessible, sustainable, efficient, resilient and inclusive health and care systems for all

Co-funded by the

European Union

- Increase funding opportunities andstrengthen the research and innovationcommunity
- Fill the knowledge gap
- Increase the ability to implement innovation
- Intensify cooperation among countries and beyond healthcare
- Increase stakeholders' involvement

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement Nº: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Overview

THCS Expected outcomes

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement Nº: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Co-funded by the

European Union

Overview

JTC 2023 "Healthcare of the Future"

To provide the necessary knowledge to build the health and care of the future and support the implementation of innovative solutions on a larger scale.

> 30 millions € 36 funders

Discover the Impact Assessment of the Joint Transnational Call 2023

JTC 2024 "Innovate to Prevent"

To support the implementation of innovative person-centred health and care models addressing prevention strategies, with the key help of existing IT and digital technologies and services, as well as existing and emerging data.

> 34 millions € 31 funders

MDR in AIS

To fund research and innovation projects that strengthen primary and community health and care systems and provide policy and decision makers with the necessary knowledge and tools to govern the transitions needed in the primary and community care sector

> 32 millions € 32 funders

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement Nº: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Enter your subtitle here

CONTACT DETAILS

Funded by the European Union under the Horizon Europe Framework Programme - Grant Agreement N^o: 101095654. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.

Questions & Answers

POC4TRIAGE

Point-of-Care Devices for Urgent Care Triage

AIT Austrian Institute of Technology

Hannes Perko | Senior Research Engineer

Webinar

4.6.2025

This project is part of the European Partnership on Transforming Health and Care Systems (THCS), which has received funding from the European Union under the Horizon Europe Framework Programm – Grant Agreement No. 1009/6564 (FFG grant agreement No. 50773503).

Call information

- Programme: Horizon Europe
- Call: HORIZON-HLTH-2023-TOOL-05-05 Harnessing the potential of real-time data analysis and secure Pointof-Care computing for the benefit of person-centred health and care delivery (Tools and technologies for a healthy society, Single stage - 2023)
- Type of action: Innovation Actions
- Submission: 13 April 2023
- Total Budget: approx. € 10 Mio (1244 PM, 103 PY)
- #Partners: 18
- Lead: University Of Turku

Project objectives

- 1. Develop and validate functionality of compact, robust, fast, accurate and energy efficient **point-of-care (POC) devices in urgent care settings** such as ambulance, ER and ICU.
- 2. To develop and apply novel **AI-driven edge-computing algorithms** for POC devices to **facilitate patient triaging**.
- 3. To **develop and validate secure Device-Hospital connectivity platform (DHCP)** with AI-based multimodal edge computing prediction algorithms, able to integrate POC device data and facilitate better triaging to nearby urgent care facilities.
- 4. To perform **clinical validation of POC devices** and DHCP for triaging in urgent care settings.
- 5. Cost-effectiveness analyses and exploitation of POC4TRIAGE results.

Consortium

		- D
MDR	in	AIS

#	Organisation Name	Country
1	University Of Turku	Finland
2	Uppsala University Hospital	Sweden
3	Austrian Institute of Technology	Austria
4	Academisch Medisch Centrum bij de Universiteit van Amsterdam	The Netherlands
5	Ben Gurion University	Israel
6	University of Oulu	Finland
7	Fundació Eurecat	Spain
8	Hospital Universitari Vall d'Hebron Spain	Spain
9	TrianecT	The Netherlands
10	ICTerra	Turkey
11	NEC Italy	Italy
12	NEC Laboratories Europe	Germany
13	Organic Electronics Saxony	Germany
14	LUPISE	France
15	European Biomedical Research Institute of Salerno	Italy
16	Stroke Alliance For Europe	Belgium
17	Allm EMEA GmbH	Germany
18	Ars Accessus Medica BV	The Netherlands

UNIVERSITY OF TURKU 🕅 Region Uppsala Ben-Gurion University of the Negev eurecat Vall d'Hebron 🛙 🔰 Amsterdam UMC Trianect CTERRA OES CUPISE European Biomedical Research Institute of Salerno SAFE NEC NEC \Grobestrating a brighter works NEC Laboratories Europe Allm SHAPING HEALTHCARE Q2m

LVO Stroke Triage with sub-hairline EEG and fNIRS

Current situation

60-75 minute treatment delay

LVO stroke triage **cannot** be performed In the **ambulance**

All suspected stroke patients transported to the **closest** hospital

54% of LVO stroke patients have to be transported again to a comprehensive stroke center

>1.2 Million / Year In Europe

LVO stroke directly to a comprehensive stroke center

Prevent inter-hospital transport of LVO stroke patients

Enable large vessel occlusion (LVO) stroke triage in the ambulance

Non-LVO stroke (and other) patients to the closest hospital

IME

Al model objective

Detect large vessel occlusion (LVO) stroke using short-term EEG and fNIRS signals acquired in prehospital ambulance settings.

Key challenges

- Limited availability of EEG/fNIRS data collected in ambulance environments
- Very short acquisition times (typically 2-3 minutes)
- Emergency context can lead to signal variability, motion artifacts, and electrode dropouts

Our approach

- POC4Triage performs clinical studies that acquire real-world measurements in ambulances, creating an important dataset foundation
- Incorporate unsupervised learning on extensive non-stroke EEG datasets to improve generalizability
- Automate data quality assessment and artifact mitigation using advanced signal processing and deep learning techniques

- 1. Multimodal patch device to sense cardiorespiratory events
 - Measures electrical and mechanical activity of the heart and tissue oxygenation

Multimodal patch prototype

- 1. Multimodal patch device to sense cardiorespiratory events
 - Measures electrical and mechanical activity of the heart and tissue oxygenation
- 2. Sub-hairline EEG-stroke device for LVO stroke detection in urgent care
 - Fast and reliable EEG measurement to detect LVO-Stroke

Sub-hairline EEG concept prototype

- 1. Multimodal patch device to sense cardiorespiratory events
 - Measures electrical and mechanical activity of the heart and tissue oxygenation
- 2. Sub-hairline EEG-stroke device for LVO stroke detection in urgent care
 - Fast and reliable EEG measurement to detect LVO-Stroke
- 3. functional near-infrared spectroscopy (fNIRS) patch for detection of brain stroke in urgent care
 - Stroke detection by measuring blood oxygenation and dynamic variations of cerebrospinal fluid in the subarachnoid space

- 1. Multimodal patch device to sense cardiorespiratory events
 - Measures electrical and mechanical activity of the heart and tissue oxygenation
- 2. Sub-hairline EEG-stroke device for LVO stroke detection in urgent care
 - Fast and reliable EEG measurement to detect LVO-Stroke
- 3. functional near-infrared spectroscopy (fNIRS) patch for detection of brain stroke in urgent care
 - Stroke detection by measuring blood oxygenation and dynamic variations of cerebrospinal fluid in the subarachnoid space
- 4. Portable immunosensor to detect blood biomarkers for stroke
 - Lateral flow electrochemical sensing method using single drop of blood

Functional near-infrared spectroscopy (fNIRS) device presentation

University of Oulu Dr. Hany Ferdinando

MDR in AIS

D3 device – POC4TRIAGE Functional near-infrared spectroscopy device (fNIRS)

University of Oulu

May 2025

$\overleftarrow{\mathcal{O}}$

MYLLYLÄ, Teemu, et al. Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy. Journal of biophotonics, 2018, 11.8: e201700123.

D3 - "Glymphometer"

• 3-channel multiwavelength fNIRS

Optionally also:

• 4 EEG

- 3D accelerometer
- 3D gyroscope
- 1 SCG (with external light cable to chest)
- 1 ECG (with external light cable to chest)
- 250 Hz sampling frequency

ŵ	Mobile app		10:18 🔊 … GlymphoLink	≵ ಔ "փ վի 🗩 82% 74%	
			Profile		
		Required data	Researcher ID Hany Country FI	Project Name POC4TRIAGE State PP	
			Oulu ① These details will app Firebase User	pear in the saved files' names.	
		Login to the cloud	No active user. Please sign in or sign up to upload files. Sign In / Sign Up		
			Connect SQA	Saved Files Profile	

Ŵ

	10:19 🕥 …	≵ ፼ ∰atil (■) 81%	10:19 🕥 …	३ ≝anıl (■) 81%
Mobile app	GlymphoLink	73%	Glympho <mark>Link</mark>	74%
	NIRS Signal (Quality	NIRS Signal Qu	ality
	Channel W1 V	V2 W3 W4	Channel W1 W2	W3 W4
NIRS signal quality indicator:	Channel 1		Channel 1	
Red = unacceptable	Channel 2		Channel 2	
Green – acceptable	Channel 3		Channel 3	
	Signal Quality updates e	every 5 seconds.	Signal Quality updates evo	ery 5 seconds.
				<u>-</u>
	Connect SQA S	aved Files Profile	Connect SQA Save	ed Files Profile

Additional info: short free text with '_' between the words For example: p1 (to indicate protocol #1), 5_5_5 (to show 5 mins baseline, 5 mins treatment, 5 mins after treatment), etc.

Anonymous ID, don't include personal ID

Discard/save the data

Most of the fields have been filled based on the information in the user's profile

1/

∦ ⊞ ⁴⁶⁺ııl 🗩 81% **GlymphoLink** 72% **Saved Files** MoEv_FI_PP_Oulu_Mo_20250523 _062909_Hany_ID13.001 10.96 MB ≪ 屾 23/05/2025 06:34 □ MoEv_FI_PP_Oulu_Mo_20250523_ 062909_Hany_ID13.bin 2.82 MB ペ 🔟 🛈 23/05/2025 06:34 MoEv_FI_PP_Oulu_Ev_20250522_ 220808_Hany_ID13.001 10.11 MB ∽ 🛍 22/05/2025 22:13 □ MoEv_FI_PP_Oulu_Ev_20250522_2 2.83 MB 20808_Hany_ID13.bin ペ 回 ① 22/05/2025 22:13 MoEv_FI_PP_Oulu_Mo_20250522 _060919_Hany_ID13.001 10.93 MB ≪ ⊡ 22/05/2025 06:14

If you want to upload the files, login through the profile screen.

For more information visit

Questions & Answers

Introduction to MDR in AIS

Minimizing Door to Reperfusion Times in Drip and Ship Model for Patients with Acute Ischemic Stroke

Rīga Stradiņš university

SYNYO

Funded by the European L

SYNYO GmbH

Alexander Nikolov | Research Manager & Project Coordinator

PROGRAMME

European Partnership on Transforming Health and Care Systems (THCS): European Union under the Horizon Europe Framework Programme – Grant Agreement No. 101095654 (FFG grant agreement No. 50773503).

PROJECT DURATION 03/2024 to 03/2027 (36 month)

IDENTIFICATION CODE FP-1127

COORDINATOR AZIENDA OSPEDALIERO UNIVERSITARIA SENESE (AOUS)

PARTNERS 6 from 5 countries (Austria, Switzerland, Italy, Spain & Latvia)

Co-funded by the European Union

CONSORTIUM

Partners map

OBJECTIVES

IMPROVE

the in-hospital workflow for LVO AIS patients to minimize treatment delays and optimize outcome

ASSESS

the efficacy and safety of the streamlined in-hospital workflow compared to the standard pathway

IDENITFY

challenges and issues in stroke management and implementation of telemedicine

COMPARE

the outcomes and feasibility of the optimized workflow in different clinical settings and partner countries

EXPLORE

the potential application of streamlined pathways for other timesensitive morbidities and improving services for all patients

EXPECTED PROJECT IMPACTS

Key information

BROADER IMPACTS AND BENEFITS

Key information

- Evaluating the optimized pathway across different clinical settings
- Sharing knowledge and improving stroke management on a broader scale

- Assessing efficacy, safety and economic sustainability of the optimized workflow
- Providing evidence for cost reduction and resource optimization

- Informing evidence-based policies and guidelines for stroke care
- Reducing disability and morbidity associated with AIS
- Enhancing the quality of life for stroke patients

NEWSLETTER

PROJECT WEBSITE

SOCIAL MEDIA

Questions & Answers

Enhancing Quality of Life for persons with stroke – EQL

An international, multi-method project across three phases

EQL aims to improve the rehabilitation process, health, and well-being of older persons with stroke rehabilitated at home across three European countries:

Sweden, Latvia, and the Netherlands.

Project Coordinator Dalarna University (Falun, Sweeden), prof. Marie Elf

Project partners

University of Groningen (Groningen, the Netherlands), prof. Louise Meijering Riga Stradins University (Riga, Latvia), asoc.prof. Signe Tomsone Lunds University (Lund, Sweeden), assoc. prof. Maya Kylén Maastricht University (Maastricht, the Netherlands), Prof. Hilde Verbeek

https://www.du.se/en/research/research-project/?projectid=22

Enhancing Quality of Life for persons with stroke – EQL

Overview of study design

Phase 1 Knowledge generation

- Review of policy documents in three countries.
- Interviews and placemapping with stakeholders.
- Translation and validation of Collective efficacy scale.

Phase 2 Developing the intervention in a co-design process

- Workshops with stakeholders, guided by the double diamond design process.

- Production of prototypes.

Phase 3 Prototype testing and implementation strategies

- Translating the intervention into practice.

- Case study and mixed methods design.

- Three-phase pilot study with a pre-test/post-test design.

Questions & Answers

TRANSFORMING HEALTH AND CARE SYSTEMS

PEER-HOME Care

Pedagogy and Enriched Environment for Rehabilitation – Holistic, Optimised, Methodical and Emphathetic Care

Guna Berzina Department of Rehabilitation Riga Stradiņš University

PEER-HOME Care

Duration: 36 months (01/05/2024-30/04/2027)

TRANSFORMING HEALTH AND CARE SYSTEMS

Rīga Stradiņš university

Team

TRANSFORMING HEALTH AND CARE SYSTEMS

Matheus Pacheco University of Porto)

Assistant Agnese Kārkliņa PhD student Riga Stradiņš University)

Marita Bjerke (LHL Stroke)

Lena Rafsten Ann Marie Hestetun-Mandrup Sunnaas Sykehus HF) (University or Gothemburg) Norwegians College of Sports) UNIVERSITT

The Objective

To develop and test the feasibility of a novel, homebased intervention that utilises Enriched Environment (EE) paradigm to enhance stroke patients' engagement in exploratory motor activities within their home environments to enhance rehabilitation.

Thank you!

Questions & Answers

Discussion

NEWSLETTER

PROJECT WEBSITE

SOCIAL MEDIA

